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SUMMARY

The problem of periodic flow of an incompressible fluid through a pipe, which is driven by an oscillating
pressure gradient (e.g. a reciprocating piston), is investigated in the case of a large Reynolds number. This
process is described by a singularly perturbed parabolic equation with a periodic right-hand side, where the
singular perturbation parameter is the viscosity �. The periodic solution of this problem is a solution of the
Navier–Stokes equations with cylindrical symmetry. We are interested in constructing a parameter-robust
numerical method for this problem, i.e. a numerical method generating numerical approximations that
converge uniformly with respect to the parameter � and require a bounded time, independent of the value
of �, for their computation. Our method comprises a standard monotone discretization of the problem
on non-standard piecewise uniform meshes condensing in a neighbourhood of the boundary layer. The
transition point between segments of the mesh with different step sizes is chosen in accordance with the
behaviour of the analytic solution in the boundary layer region. In this paper we construct the numerical
method and discuss the results of extensive numerical experiments, which show experimentally that the
method is parameter-robust. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The recent development of novel piecewise uniform fitted mesh techniques [1] has facilitated
considerable advancement in the numerical solution of singularly perturbed differential equa-
tions. Linear problems of this type have been solved with these techniques yielding numerical
solutions that exhibit convergence uniformly with respect to the singular perturbation parame-
ter, while the computational work required to obtain these solutions is also independent of this
parameter [2–4]; we refer to numerical methods with this property as parameter-robust meth-
ods. These fitted mesh techniques have also been applied successfully to the computation of
parameter-robust solutions of non-linear problems [4–7]. Ultimately we are interested in the
development of parameter-robust numerical methods for solving the Navier–Stokes equations.
To realize this goal, we need to gain more insight into techniques for overcoming the many
obstacles that lie in the path. For this reason it is useful to construct numerical methods for the
solution of simpler problems with known solutions. Thus far, flow problems with only a zero
pressure gradient have been considered. Furthermore, all of these problems have steady bound-
ary layers [8]. Our objective here is to consider more complicated problems, in which not only
is the boundary layer unsteady [8, 9], but also the flow is driven by a periodic pressure gradi-
ent. One problem with these attributes is flow in a pipe under the influence of a reciprocating
piston [8].

We denote the co-ordinate along the axis of the pipe by x and the radial distance by r . We
assume that the pipe has a constant circular cross section with radius R. We further assume that
the pipe is long, so that the flow can be taken to be independent of x . This means that the axial
velocity component is independent of x , and thus the other velocity components vanish along with
the convective terms that are parallel to the pipe. Therefore, the full Navier–Stokes equations in
cylindrical co-ordinates for this problem [8] reduce to
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�p
�x

+ �

(
�2u
�r2

+ 1

r
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where u is the axial velocity, p is the pressure, � is the density and � is the viscosity of the fluid.
The boundary condition on the wall of the pipe is the usual no-slip condition

u(t, R) = 0 (2)

i.e. the velocity is zero at the wall. This determines the location of the boundary layer. Assuming
that the oscillations of the pressure gradient are harmonic with period T = 2�/n we have

−1

�

�p
�x

= � cos nt (3)

where � denotes a constant and n is the frequency of the oscillations. Here R and T = 2�/n are
constants independent of the singular perturbation parameter �.

Problems (1)–(3) are a periodic problem on the rectangle �, where

�= � ∪ �, �= (0, R) × (0, T ) (4)

The boundary of � is �=�L ∪ �R ∪ �T ∪ �0 where �L , �R, �T and �0 denote the left, right,
top and bottom edges of �, respectively. We seek the solution of Equations (1)–(3) on � subject
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to the additional boundary conditions

u|�0 = u|�T (5)

�
�r

u|�L = 0 (6)

Note that the boundary condition (5) ensures that the solution is periodic in time, while the
boundary condition (6) reflects the symmetry of the problem.

Problems (1)–(6) has the exact periodic solution [8]

u(r, t) =− i
�

n
eint

⎡
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where Jo is the Bessel function of the first kind of order zero and i= √−1. Furthermore, some
simple analysis [8, 10] shows that the thickness of the boundary layer � is

� ∼
√

�

n
(8)

Typically, such flow problems exhibit a two zone structure, namely, the inviscid core flow and the
layer flow close to the wall. For our analysis we assume that n is fixed. Note that the layer arises
when the value �/n is small (that is, when � is small and/or n is large).

Since the second derivative term in the equation of motion (1) is multiplied by the viscosity
�, where � may be arbitrarily small, this equation is clearly a singularly perturbed differential
equation with � as the singular perturbation parameter. In the case of steady boundary layers, the
layer thickness depends only on the singular perturbation parameter. Here, however, the situation
is different: the boundary layer is unsteady and so account must be taken of the time spent by a
fluid particle in the layer, which depends on the frequency of the harmonic oscillation. We will
consider this in more detail later.

Our objective is to obtain numerical solutions to this periodic problem, that are robust with
respect to � for a fixed frequency n = 1. The sensitivity of classical numerical methods to the
singular perturbation parameter is reflected by the fact that the maximum pointwise errors, in
the numerical approximations produced by such methods, become unacceptably large for small
�. This has been shown for linear problems, e.g. in Reference [2], and more recently for non-
linear problems in Reference [5], where it is also shown that this difficulty is not resolved unless
the meshes are appropriately fitted to the boundary layer. The numerical method constructed
here comprises appropriately fitted piecewise-uniform meshes [4, 5, 11, 12] in conjunction with
an upwind finite difference operator [4, 12]. This is a parameter-robust numerical method for
problems (1)–(6), as is shown experimentally in the following sections by extensive numerical
computations.

As mentioned earlier, the full Navier–Stokes equations in cylindrical co-ordinates reduce to (1)
for this problem. But there is no known parameter-robust method for solving the Navier–Stokes
equations, even for this simple geometry, so it is worthwhile considering the numerical solution of
this simple model problem, even for those values of � for which this formulation is not physically
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valid. Note that, even though the values of � may become physically invalid, when they are taken
in conjunction with the frequency n, they may still be acceptable.

2. A ROBUST FINITE DIFFERENCE SCHEME

We want to construct a �-robust finite difference method for problems (1)–(6). We first define the
fitted piecewise uniform mesh for this method. On the finite rectangular domain �, corresponding

to a single period of the pressure gradient oscillation, we place a rectangular mesh �
N
� , which is

the tensor product

�
N
� = �

Nr
� × �

Nt (9)

where N= (Nr , Nt ). Here �
Nt is a uniform mesh on the interval [0, T ] with Nt mesh intervals,

while �
Nr
� is a piecewise uniform fitted mesh on the interval [0, R] with Nr mesh intervals. To

fit the piecewise uniform mesh �
Nr
� to the boundary layer, the interval [0, R] is divided into two

subintervals [0, R−�] and [R−�, R], ��R/2. Then Nr/2 equidistant mesh intervals are assigned
to each subinterval. Here we take Nr = Nt = N and so

ri =
{
2i(1 − �)/N , i = 0, 1, 2, . . . N/2

R − � + 2(i − N/2)(1 − (R − �))/N , i = N/2, . . . , N
(10)

with t j = t j−1 + h, j = 1, . . . , N , h = 2�/N .
The correct choice of the transition point � is of particular significance, since, by reducing � as

� decreases, the mesh condenses in the �-neighbourhood of the set r = R. Following the principles
set out in References [3, 4], the value of � is chosen to be

� = min
{
1
2 R,C�1/2 ln N

}
where C is an arbitrary constant. The factor �1/2 is motivated from (8), while experimentation
suggests that C = √

2 is a reasonable value.
Using this fitted piecewise uniform mesh, the upwind operator for the discretization of (1) and a

standard discretization of the boundary conditions (2), (5) and (6), we obtain on �N
� the monotone

finite difference method

−�

[
�2rU�(ri , t j ) + 1

ri
D+
r U�(ri , t j )

]
+ D−

t U�(ri , t j ) − � cos nt j = 0 (11)

U�(R, t j ) = 0 all t j ∈ �R, U�(ri , 0) =U�(ri , T ) all ri ∈ �0

D+
r U�(0, t j ) = 0 all t j ∈ �L

(12)

where

D+
r U�(ri , t j ) ≡ U�(ri+1, t j ) −U�(ri , t j )

ri+1 − ri
, D−

r U�(ri , t j ) ≡ U�(ri , t j ) −U�(ri−1, t j )

ri − ri−1
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Figure 1. Surface plot of numerical solutions for � = 2−5 and � = 2−10 on a fitted piecewise uniform
mesh with N = 32 and tol= 10−3.

with an analogous definition of D−
t U�(ri , t j ), and

�2rU�(ri , t j ) ≡ D+
r U�(ri , t j ) − D−

r U�(ri , t j )

(ri+1 − ri−1)/2

We solve the discrete problem (11), (12) using the following iterative process. We take an initial
guess

U (ri , 0)= u0(ri ) (13)

for all ri ∈ �0, where u0 is an arbitrary function (we take u0 = 0). We solve the discrete problem for
the function U�(ri , t j ), for j = 1, 2, . . . , N , satisfying Equation (11) and the boundary conditions
(12) by a marching algorithm. We take U (ri , T ) to be the new values for u0(ri ), i = 1, 2, . . . , N
in (13) and repeat the marching algorithm. This process is repeated until we reach a numerical
solution that is periodic up to a prescribed tolerance tol, in the sense that

max
0�i�N

|U�(ri , T ) −U�(ri , 0)|�N
�

�tol (14)

Our main purpose in what follows is to show experimentally that the numerical solutions of the
finite difference scheme (11), (12), satisfying (14), converges �-uniformly to the solution of the
periodic problem.

To illustrate the boundary layer behaviour we plot the solution of problem (11), (12) for � = 2−5

and � = 2−10 with N = 32 in Figure 1. The desired tolerance (14) is achieved after 8 iterations for
� = 2−5 and 87 iterations for � = 2−10. Note that we have used a non-standard orientation of the
graph for a clearer view of the boundary layer.

Since we know the exact solution of the problem, in this case we can directly determine the
error. We denote by U 2048

� the numerical solution on the finest mesh, which here corresponds to
N = 2048, and by Ū 2048

� its piecewise linear interpolant. We take Ū 2048
� as the reference solution.

We then introduce the computed pointwise errors with respect to the finest mesh

EN
� =‖UN

� − Ū 2048
� ‖�N

�
(15)

The associated computed �-uniform pointwise errors are

EN = max
�

EN
� (16)
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Table I. Errors EN
� and EN for various values of � and N .

Number of intervals N

� 32 64 128 256 512 1024

2−1 0.113D+00 0.575D−01 0.282D−01 0.133D−01 0.571D−02 0.191D−02
2−2 0.264D+00 0.135D+00 0.664D−01 0.313D−01 0.135D−01 0.449D−02
2−3 0.468D+00 0.238D+00 0.117D+00 0.551D−01 0.237D−01 0.792D−02
2−4 0.587D+00 0.296D+00 0.145D+00 0.682D−01 0.293D−01 0.979D−02
2−5 0.540D+00 0.269D+00 0.131D+00 0.614D−01 0.263D−01 0.878D−02
2−6 0.458D+00 0.227D+00 0.110D+00 0.516D−01 0.221D−01 0.738D−02
2−7 0.447D+00 0.222D+00 0.108D+00 0.506D−01 0.217D−01 0.723D−02
2−8 0.439D+00 0.218D+00 0.106D+00 0.498D−01 0.214D−01 0.724D−02
2−9 0.434D+00 0.216D+00 0.105D+00 0.492D−01 0.211D−01 0.716D−02
2−10 0.431D+00 0.216D+00 0.106D+00 0.515D−01 0.322D−01 0.115D−01
2−11 0.432D+00 0.236D+00 0.141D+00 0.862D−01 0.377D−01 0.126D−01
2−12 0.488D+00 0.299D+00 0.184D+00 0.863D−01 0.370D−01 0.124D−01
2−13 0.603D+00 0.378D+00 0.184D+00 0.863D−01 0.371D−01 0.124D−01
2−14 0.768D+00 0.380D+00 0.184D+00 0.862D−01 0.371D−01 0.124D−01
2−15 0.773D+00 0.380D+00 0.184D+00 0.862D−01 0.371D−01 0.124D−01
2−16 0.773D+00 0.380D+00 0.184D+00 0.862D−01 0.371D−01 0.124D−01
2−17 0.773D+00 0.380D+00 0.184D+00 0.861D−01 0.371D−01 0.124D−01
2−18 0.773D+00 0.380D+00 0.184D+00 0.861D−01 0.370D−01 0.124D−01
2−19 0.773D+00 0.380D+00 0.184D+00 0.861D−01 0.371D−01 0.124D−01
2−20 0.773D+00 0.380D+00 0.184D+00 0.861D−01 0.370D−01 0.124D−01

EN 0.773D+00 0.380D+00 0.184D+00 0.863D−01 0.377D−01 0.126D−01

Table II shows the errors EN
� and EN . We note that all of the results shown in this, and all

subsequent tables, are for solutions for which criterion (14) is satisfied with tol= 10−3. We
see from Table II that the entries are decreasing along each of the rows with increasing N . In
addition, the entries decrease and stabilize at values around � = 2−15 for all N . The numeri-
cal results in Table II demonstrate experimentally that the numerical solutions converge
�-uniformly.

We now analyse the errors in the numerical solutions in a different way, which does not depend
on a priori knowledge of the exact solution. We introduce the computed pointwise two-mesh
differences

DN
� =‖UN

� − Ū 2N
� ‖�N

�
(17)

which are the differences between the numerical solutions computed on the meshes �N
� and �2N

�
(see, e.g. References [3, 4]). The associated computed �-uniform pointwise two-mesh differences
are given by

DN = max
�

DN
� (18)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:471–484
DOI: 10.1002/fld



ROBUST NUMERICAL METHOD FOR PERIODIC DRIVEN FLOW THROUGH A PIPE 477

Table II. Two mesh differences DN
� and DN for various values of � and N .

Number of intervals N

� 32 64 128 256 512

2−1 0.562D−01 0.294D−01 0.150D−01 0.757D−02 0.380D−02
2−2 0.130D+00 0.686D−01 0.352D−01 0.178D−01 0.896D−02
2−3 0.231D+00 0.121D+00 0.620D−01 0.314D−01 0.158D−01
2−4 0.292D+00 0.151D+00 0.770D−01 0.389D−01 0.195D−01
2−5 0.272D+00 0.138D+00 0.698D−01 0.350D−01 0.176D−01
2−6 0.232D+00 0.117D+00 0.590D−01 0.295D−01 0.148D−01
2−7 0.224D+00 0.114D+00 0.575D−01 0.289D−01 0.145D−01
2−8 0.220D+00 0.112D+00 0.564D−01 0.285D−01 0.143D−01
2−9 0.217D+00 0.111D+00 0.558D−01 0.280D−01 0.141D−01
2−10 0.216D+00 0.111D+00 0.556D−01 0.308D−01 0.206D−01
2−11 0.217D+00 0.111D+00 0.578D−01 0.486D−01 0.251D−01
2−12 0.221D+00 0.116D+00 0.975D−01 0.494D−01 0.246D−01
2−13 0.230D+00 0.194D+00 0.982D−01 0.492D−01 0.247D−01
2−14 0.387D+00 0.196D+00 0.982D−01 0.492D−01 0.247D−01
2−15 0.393D+00 0.196D+00 0.982D−01 0.492D−01 0.247D−01
2−16 0.393D+00 0.196D+00 0.982D−01 0.492D−01 0.247D−01
2−17 0.393D+00 0.196D+00 0.982D−01 0.492D−01 0.247D−01
2−18 0.393D+00 0.196D+00 0.982D−01 0.492D−01 0.246D−01
2−19 0.393D+00 0.196D+00 0.982D−01 0.492D−01 0.247D−01
2−20 0.393D+00 0.196D+00 0.982D−01 0.492D−01 0.246D−01

DN 0.393D+00 0.196D+00 0.982D−01 0.494D−01 0.251D−01

We use the pointwise two-mesh differences DN
� to define the pointwise orders of convergence

RN
� = log2

DN
�

D2N
�

(19)

Furthermore, we use the �-uniform two mesh differences DN to define the computed �-uniform
orders of convergence

RN = log2
DN

D2N
(20)

Following the technique in Reference [4] we introduce a final �-uniform order of convergence

R∗ = min
N

RN (21)

The same technique gives us the computed �-uniform error constant

C∗
R∗ = max

N
CN
R∗ (22)
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Table III. Orders of convergence RN
� for various values of � and N .

Number of intervals N

� 32 64 128 256

2−1 0.94 0.97 0.99 0.99
2−2 0.93 0.96 0.98 0.99
2−3 0.93 0.97 0.98 0.99
2−4 0.95 0.97 0.99 0.99
2−5 0.97 0.99 0.99 1.00
2−6 0.99 0.99 1.00 1.00
2−7 0.97 0.99 0.99 1.00
2−8 0.97 0.99 0.99 1.00
2−9 0.97 0.99 0.99 0.99
2−10 0.96 0.99 0.85 0.58
2−11 0.96 0.94 0.25 0.95
2−12 0.93 0.24 0.98 1.00
2−13 0.24 0.98 1.00 0.99
2−14 0.98 1.00 1.00 0.99
2−15 1.00 1.00 1.00 0.99
2−16 1.00 1.00 1.00 0.99
2−17 1.00 1.00 1.00 0.99
2−18 1.00 1.00 1.00 1.00
2−19 1.00 1.00 1.00 0.99
2−20 1.00 1.00 1.00 1.00

RN 1.00 1.00 0.99 0.98

Table IV. Computed �-uniform orders of convergence, error constants, error bounds
and error for various values of N .

Number of intervals N

32 64 128 256

RN 1.00 1.00 0.99 0.98 (R∗ = 0.98)
CN
0.98 23.80 23.41 23.14 22.96 (C∗

0.98 = 23.80)

C∗
0.98N

−0.98 0.797 0.404 0.205 0.104

EN 0.773 0.380 0.184 0.0863

and thus a computed upper bound for the error C∗
R∗N−R∗

where the quantities CN
R∗ are computed

from

CN
R∗ = DN N R∗

1 − 2−R∗ (23)

Values of the computed two mesh differences DN
� and DN are given in Table II and the

corresponding computed RN in Table III. In Tables I and II we notice that the errors are reducing
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Table V. Number of iterations I N� and I N required to satisfy (14) with tol= 10−3 for
various values of � and N .

Number of intervals N

� 32 64 128 256 512 1024

2−1 2 2 2 2 2 2
2−2 2 2 2 2 2 2
2−3 3 3 3 3 3 3
2−4 5 5 5 5 5 5
2−5 8 8 7 7 7 7
2−6 12 12 12 11 11 11
2−7 20 19 18 17 17 17
2−8 33 30 27 25 24 23
2−9 54 47 40 34 30 27
2−10 87 71 55 40 21 18
2−11 134 100 62 25 19 17
2−12 190 113 36 23 18 17
2−13 219 63 34 22 18 16
2−14 120 58 32 22 18 16
2−15 110 56 32 22 18 16
2−16 105 53 31 22 18 16
2−17 96 53 31 21 18 16
2−18 94 52 30 21 17 16
2−19 55 49 31 22 18 16
2−20 68 41 26 21 17 16

I N 219 113 62 40 30 27

Figure 2. Surface plot of numerical solutions for � = 2−5 and � = 2−10 on a uniform
mesh with N = 32 and tol= 10−3.

along each of the rows for increasing N , also the errors stabilize to fixed values around � = 2−15,
except for one column, i.e. for N = 512 in both Tables I and II (last few rows). This is because
of the choice of the tolerance and is expected. In addition, in Table III the computed RN are
computed using DN from Table II. The numerical results in these tables demonstrate that the
numerical solutions converge �-uniformly.
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Table VI. Errors EN
� for various values of � and N on a uniform mesh, with the finest mesh

N = 2048 computed on a uniform mesh.

Number of intervals N

� 32 64 128 256 512 1024

2−0 0.453D−01 0.228D−01 0.112D−01 0.525D−02 0.226D−02 0.754D−03
2−1 0.113D+00 0.575D−01 0.282D−01 0.133D−01 0.571D−02 0.191D−02
2−2 0.264D+00 0.135D+00 0.664D−01 0.313D−01 0.135D−01 0.449D−02
2−3 0.468D+00 0.238D+00 0.117D+00 0.551D−01 0.237D−01 0.792D−02
2−4 0.587D+00 0.296D+00 0.145D+00 0.682D−01 0.293D−01 0.979D−02
2−5 0.540D+00 0.269D+00 0.131D+00 0.614D−01 0.263D−01 0.878D−02
2−6 0.458D+00 0.227D+00 0.110D+00 0.516D−01 0.221D−01 0.738D−02
2−7 0.449D+00 0.222D+00 0.108D+00 0.506D−01 0.217D−01 0.723D−02
2−8 0.446D+00 0.220D+00 0.107D+00 0.499D−01 0.214D−01 0.724D−02
2−9 0.447D+00 0.219D+00 0.106D+00 0.495D−01 0.212D−01 0.719D−02
2−10 0.456D+00 0.223D+00 0.108D+00 0.516D−01 0.322D−01 0.115D−01
2−11 0.473D+00 0.237D+00 0.142D+00 0.862D−01 0.377D−01 0.126D−01
2−12 0.508D+00 0.300D+00 0.184D+00 0.863D−01 0.370D−01 0.124D−01
2−13 0.609D+00 0.379D+00 0.184D+00 0.862D−01 0.371D−01 0.124D−01
2−14 0.769D+00 0.380D+00 0.184D+00 0.862D−01 0.371D−01 0.124D−01
2−15 0.773D+00 0.425D+00 0.184D+00 0.862D−01 0.371D−01 0.124D−01
2−16 0.773D+00 0.475D+00 0.264D+00 0.862D−01 0.371D−01 0.124D−01
2−17 0.773D+00 0.402D+00 0.371D+00 0.147D+00 0.375D−01 0.124D−01
2−18 0.773D+00 0.380D+00 0.385D+00 0.260D+00 0.701D−01 0.141D−01
2−19 0.773D+00 0.380D+00 0.293D+00 0.346D+00 0.145D+00 0.298D−01
2−20 0.773D+00 0.380D+00 0.187D+00 0.335D+00 0.247D+00 0.578D−01
2−21 0.773D+00 0.380D+00 0.184D+00 0.232D+00 0.315D+00 0.117D+00
2−22 0.775D+00 0.380D+00 0.184D+00 0.129D+00 0.287D+00 0.192D+00
2−23 0.774D+00 0.384D+00 0.184D+00 0.928D−01 0.184D+00 0.228D+00
2−24 0.774D+00 0.382D+00 0.189D+00 0.882D−01 0.971D−01 0.191D+00
2−25 0.773D+00 0.381D+00 0.188D+00 0.946D−01 0.597D−01 0.122D+00
2−26 0.773D+00 0.381D+00 0.186D+00 0.912D−01 0.519D−01 0.698D−01

EN 0.775D+00 0.475D+00 0.385D+00 0.346D+00 0.315D+00 0.228D+00

In Table IV we show the computed �-uniform orders of convergence RN , the computed
�-uniform order of convergence R∗, the quantities CN

R∗ and the computed �-uniform maximum
error bounds, C∗

R∗N−R∗
. These are determined as follows. From the first row of Table IV we see

that the orders RN and that the minimum of these values gives R∗ = 0.98. With this information,
and the values of DN in Table II, we find the computed error constants CN

0.98 and hence C∗
0.98,

which gives the second row of Table IV. The third row, i.e. C∗
0.98N

−0.98, is obtained immediately
from the second, and the fourth row, i.e. EN , is simply part of the last row of Table I.

If the computed �-uniform error bounds are indeed error bounds, then it is to be expected that
they should be larger than the computed �-uniform errors. Inspection of the last two rows of
Table IV shows that this is the case. We conclude from these tables that the method (11), (12),
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Table VII. Two mesh differences DN
� for various values of � and N on a uniform mesh.

Number of intervals N

� 32 64 128 256 512

2−1 0.562D−01 0.294D−01 0.150D−01 0.757D−02 0.380D−02
2−2 0.130D+00 0.686D−01 0.352D−01 0.178D−01 0.896D−02
2−3 0.231D+00 0.121D+00 0.620D−01 0.314D−01 0.158D−01
2−4 0.292D+00 0.151D+00 0.770D−01 0.389D−01 0.195D−01
2−5 0.272D+00 0.138D+00 0.698D−01 0.350D−01 0.176D−01
2−6 0.232D+00 0.117D+00 0.590D−01 0.295D−01 0.148D−01
2−7 0.227D+00 0.114D+00 0.575D−01 0.289D−01 0.145D−01
2−8 0.227D+00 0.113D+00 0.568D−01 0.285D−01 0.143D−01
2−9 0.229D+00 0.114D+00 0.567D−01 0.283D−01 0.142D−01
2−10 0.234D+00 0.115D+00 0.570D−01 0.308D−01 0.207D−01
2−11 0.247D+00 0.119D+00 0.602D−01 0.486D−01 0.251D−01
2−12 0.271D+00 0.130D+00 0.976D−01 0.494D−01 0.246D−01
2−13 0.322D+00 0.195D+00 0.982D−01 0.492D−01 0.247D−01
2−14 0.389D+00 0.196D+00 0.982D−01 0.492D−01 0.247D−01
2−15 0.393D+00 0.265D+00 0.106D+00 0.492D−01 0.247D−01
2−16 0.393D+00 0.264D+00 0.189D+00 0.555D−01 0.247D−01
2−17 0.393D+00 0.216D+00 0.243D+00 0.112D+00 0.283D−01
2−18 0.393D+00 0.196D+00 0.225D+00 0.190D+00 0.561D−01
2−19 0.393D+00 0.196D+00 0.167D+00 0.234D+00 0.116D+00
2−20 0.393D+00 0.196D+00 0.120D+00 0.205D+00 0.191D+00
2−21 0.393D+00 0.196D+00 0.985D−01 0.141D+00 0.230D+00
2−22 0.395D+00 0.196D+00 0.982D−01 0.935D−01 0.196D+00
2−23 0.394D+00 0.200D+00 0.987D−01 0.660D−01 0.129D+00
2−24 0.393D+00 0.198D+00 0.105D+00 0.572D−01 0.776D−01
2−25 0.393D+00 0.197D+00 0.102D+00 0.611D−01 0.490D−01
2−26 0.393D+00 0.197D+00 0.100D+00 0.552D−01 0.416D−01

DN 0.395D+00 0.265D+00 0.243D+00 0.234D+00 0.230D+00

satisfying (14), is robust with respect to the singular perturbation parameter � and that its �-uniform
order of convergence is nearly 1.

We remark that, at first sight it may be tempting to determine computed �-uniform orders of
convergence from Table III by taking the minimum value in each column and then taking the
minimum of these minimum values as the final computed �-uniform order of convergence. That
this gives an excessively pessimistic result is borne out by, and is one of the main results of, the
experimental error analysis given in Table IV.

We now consider Table V which indicates the number of iterations required to achieve the
specified tolerance 10−3 in (14). We define

I N = max
�

I N�

where I N� is the number of iterations required to achieve this tolerance.
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Table VIII. Orders of convergence RN
� for various values of � and

N on a uniform mesh.

Number of intervals N

� 32 64 128 256

2−0 0.96 0.98 0.99 0.99
2−1 0.94 0.97 0.99 0.99
2−2 0.93 0.96 0.98 0.99
2−3 0.93 0.97 0.98 0.99
2−4 0.95 0.97 0.99 0.99
2−5 0.97 0.99 0.99 1.00
2−6 0.99 0.99 1.00 1.00
2−7 0.99 0.99 0.99 1.00
2−8 1.00 1.00 0.99 1.00
2−9 1.01 1.00 1.00 1.00
2−10 1.02 1.02 0.89 0.58
2−11 1.05 0.99 0.31 0.95
2−12 1.06 0.42 0.98 1.00
2−13 0.73 0.99 1.00 0.99
2−14 0.98 1.00 1.00 0.99
2−15 0.57 1.32 1.11 0.99
2−16 0.57 0.48 1.77 1.17
2−17 0.87 −0.17 1.12 1.99
2−18 1.00 −0.19 0.24 1.76
2−19 1.00 0.24 −0.49 1.02
2−20 1.00 0.71 −0.77 0.10
2−21 1.00 1.00 −0.52 −0.71
2−22 1.01 1.00 0.07 ****
2−23 0.97 1.02 0.58 −0.96
2−24 0.99 0.92 0.88 −0.44
2−25 0.99 0.95 0.74 0.32
2−26 1.00 0.98 0.86 0.41

RN 0.58 0.13 0.05 0.03

We see that, for each fixed value of �, as N increases the number of iterations reduces, as
expected. More importantly, it is apparent from this table that, as � reduces, for each fixed N ,
the number of iterations required decreases and stabilizes. It is this result that confirms that the
numerical approximations generated by this method converge to the solution �-uniformly and
independently of the period.

With standard numerical methods (i.e. methods that do not use a fitted piecewise uniform
mesh), as � decreases and the layer gets thinner, extremely fine meshes are required to capture
the activity within the layer. This is not an acceptable situation. To verify this claim we show in
Figure 2 the solution of the problem on a uniform mesh with N = 32 and � = 2−5 and � = 2−10.
We see from this figure that, for � = 2−10, the activity inside the layer region close to the wall
is ‘not smooth’ in comparison to the situation in Figure 1. This means that the uniform mesh
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Table IX. Errors EN
� for various values of � and N on a uniform mesh, with the finest mesh N = 2048

computed on a piecewise uniform mesh.

Number of intervals N

� 32 64 128 256 512 1024

2−0 0.453D−01 0.228D−01 0.112D−01 0.525D−02 0.226D−02 0.754D−03
2−1 0.113D+00 0.575D−01 0.282D−01 0.133D−01 0.571D−02 0.191D−02
2−2 0.264D+00 0.135D+00 0.664D−01 0.313D−01 0.135D−01 0.449D−02
2−3 0.468D+00 0.238D+00 0.117D+00 0.551D−01 0.237D−01 0.792D−02
2−4 0.587D+00 0.296D+00 0.145D+00 0.682D−01 0.293D−01 0.979D−02
2−5 0.540D+00 0.269D+00 0.131D+00 0.614D−01 0.263D−01 0.878D−02
2−6 0.458D+00 0.227D+00 0.110D+00 0.516D−01 0.221D−01 0.738D−02
2−7 0.449D+00 0.222D+00 0.108D+00 0.506D−01 0.217D−01 0.723D−02
2−8 0.446D+00 0.220D+00 0.107D+00 0.499D−01 0.214D−01 0.724D−02
2−9 0.447D+00 0.219D+00 0.106D+00 0.495D−01 0.212D−01 0.719D−02
2−10 0.457D+00 0.223D+00 0.108D+00 0.516D−01 0.322D−01 0.115D−01
2−11 0.473D+00 0.237D+00 0.142D+00 0.862D−01 0.377D−01 0.126D−01
2−12 0.508D+00 0.300D+00 0.184D+00 0.863D−01 0.370D−01 0.124D−01
2−13 0.609D+00 0.379D+00 0.184D+00 0.862D−01 0.371D−01 0.124D−01
2−14 0.769D+00 0.380D+00 0.184D+00 0.862D−01 0.371D−01 0.124D−01
2−15 0.773D+00 0.425D+00 0.184D+00 0.862D−01 0.371D−01 0.124D−01
2−16 0.773D+00 0.475D+00 0.265D+00 0.862D−01 0.371D−01 0.124D−01
2−17 0.773D+00 0.402D+00 0.373D+00 0.149D+00 0.388D−01 0.124D−01
2−18 0.773D+00 0.380D+00 0.387D+00 0.264D+00 0.750D−01 0.194D−01
2−19 0.773D+00 0.380D+00 0.295D+00 0.353D+00 0.156D+00 0.406D−01
2−20 0.773D+00 0.380D+00 0.186D+00 0.344D+00 0.267D+00 0.782D−01
2−21 0.773D+00 0.380D+00 0.184D+00 0.239D+00 0.345D+00 0.160D+00
2−22 0.775D+00 0.380D+00 0.184D+00 0.129D+00 0.323D+00 0.268D+00
2−23 0.774D+00 0.384D+00 0.184D+00 0.922D−01 0.211D+00 0.341D+00
2−24 0.774D+00 0.382D+00 0.189D+00 0.882D−01 0.968D−01 0.313D+00
2−25 0.773D+00 0.381D+00 0.188D+00 0.947D−01 0.579D−01 0.196D+00
2−26 0.773D+00 0.381D+00 0.186D+00 0.909D−01 0.526D−01 0.804D−01

EN 0.775D+00 0.475D+00 0.387D+00 0.353D+00 0.345D+00 0.341D+00

is not sufficiently fine to capture this in-layer activity in this case. To emphasize experimentally
the shortcomings of a uniform mesh to analyse the numerical solution of this problem we now
recompute, using a uniform mesh, but to fully illustrate this behaviour we consider the complete
tables, all results are given in Tables VI–IX. Table VI shows the errors with respect to the finest mesh
corresponding to N = 2048. In addition, Table VII and VIII give the errors and the corresponding
orders of convergence with respect to the two mesh differences. The results in these tables display
erratic behaviour of the errors as the singular perturbation parameter decreases. This once again
signifies the inefficiency of a uniform mesh for a singularly perturbed problem.

We further consider the numerical results computed in Table IX, this table shows a different
approach to computing the errors. We still solve the problem on a uniform mesh but the finest
mesh, for the reference solution, is computed on a piecewise uniform mesh. Once again this table
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confirms the non-uniform behaviour seen when a uniform mesh is employed and the results are
not parameter robust.

3. SUMMARY AND DISCUSSION OF RESULTS

For the periodic problems (1)–(6), we have constructed a monotone difference approximation. We
have solved the problem on a special piecewise uniformmesh, which is defined using the asymptotic
behaviour of the solution. With the aid of computational experiments, we have demonstrated that
constructed numerical method gives numerical solutions for which the errors are independent of
the viscosity �. We have contrasted the results with the results associated with employing a uniform
mesh for the problem and clearly the results support our constructed numerical method on a non-
uniform mesh. In addition, we have demonstrated experimentally that the number of iterations
required to solve the discrete problem with this algorithm is independent of �. In addition, it is
worth noting that one can easily attain the same results for increasing n while the viscosity is
kept constant. The increasing value of n would correspond to an increasing pumping frequency.
One practical application that lends itself to such a case is in the area of blood flow models.
Furthermore, we also note that the parameter-robust behaviour attained is for a periodic problem.
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